
Linear Drive with Toothed Belt and Integrated Guide

with Recirculating Ball Bearing Guide
 with Roller Guide

Series OSP-E..BHD

Contents

Description	Data Sheet No.	Page
Overview	1.15.001E	11-14
Version with Recirculating Ball Bearing Guid	е	
Technical Data	1.15.002E-1 to 3	15-17
Dimensions	1.15.002E-4, 5	18, 19
Order Instructions	1.15.002E-10	24
Version with Roller Guide		
Technical Data	1.15.002E-6 to 8	19-22
Dimensions	1.15.002E-9	23
Order Instructions	1.15.002E-10	24

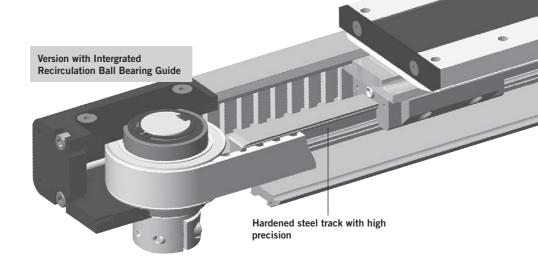
The System Concept

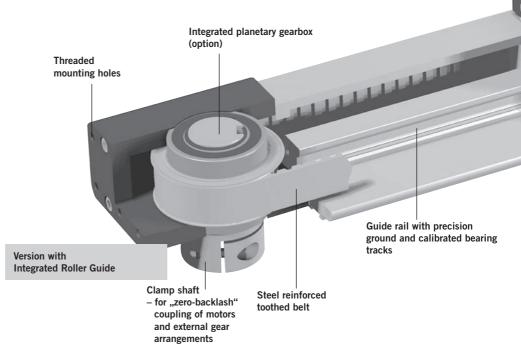
LINEAR DRIVE WITH TOOTHED BELT FOR HEAVY DUTY APPLICATIONS

The latest generation of high capacity linear drives, the OSP-E..BHD series combines robustness, precision and high performance. The aesthetic design is easily integrated into any machine constructions by virtue of extremely adaptable mountings.

Linear Drive with Toothed Belt - selective with Integrated Recirculating Ball Bearing Guide or Integrated Roller Guide

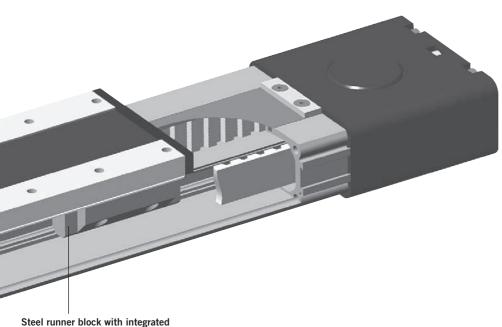
Advantages:

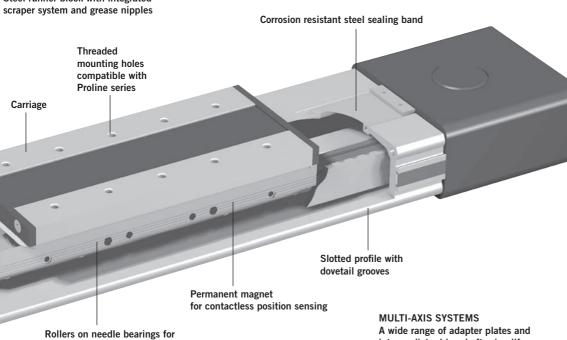

- Accurate path and position control
- High force output
- High speed operation
- High load capacity
- Easy installation
- Low maintenance
- Ideal for multi-axis applications


Features:

- Integrated recirculating ball bearing guide or integrated roller guide
- Diverse range of multi-axis connection elements
- Diverse range of accessories and mountings
- Complete motor and control packages
- Optional integrated planetary gearbox
- Special options on request

Take the easy route and load all the dimensions into your system. The file is suitable for all current CAD systems – available on CD-Rom or at www.parker-origa.com





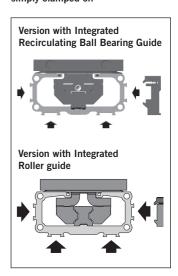
Drive Shaft Versions

BI-PARTING Version for perfectly synchronised bi-parting movements.

smooth operation up to 10 m/s.

A wide range of adapter plates and intermediate drive shafts simplify engineering and installation

Drive Shaft OPTIONS


OPTION Integrated planetary gearbox

- Highly compact and rigid solution fully integrated in the drive cap housing
- Purpose designed for the BHD series
- Available with three standard ratios (3, 5 and 10)
- Very low backlash
- A wide range of available motor flanges

The dovetailed mounting rails of the new linear actuator expand its function into that of a universal system carrier.

Modular system components are simply clamped on

OPTIONS AND ACCESSORIES

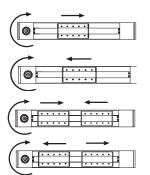
SERIES OSP-E, LINEAR DRIVE WITH TOOTHED BELT AND INTEGRATED GUIDE

STANDARD VERSIONS OSP-E..BHD

Version with Recirculating Ball Bearing Guide

Data sheets 1.15.002E-1 to 5, 10 **Version with Roller Guide**Data sheets1.15.002E-6 to 10

Standard carrier with integrated guide and magnets for contactless position sensing. Dovetail profile for mounting of accessories and the actuator itself.


DRIVE SHAFT WITH CLAMP SHAFT

DRIVE SHAFT WITH PLAIN SHAFT

ACTUATING DIRECTION
Data sheet 1.15.002E-10
Important in parallel operations, e.g.
with intermediate drive shaft

Standard – Bi-Parting Version

Standard

OPTIONS

TANDEM
Data sheet 1.15.002E
For higher moment support.

BI-PARTING VERSION Data sheet 1.15.002E For perfectly synchronised bi-parting movements.

DRIVE SHAFT WITH
CLAMP SHAFT AND PLAIN SHAFT
For connections with intermediate
drive shaft
(Data sheet 1.38.004E)

HOLLOW SHAFT WITH KEYWAY For close coupling of motors and external gears.

INTEGRATED PLANETARY GEARBOX Data sheet 1.15.002E-5 For compact installation and very low backlash.

ACCESSORIES

MOTOR MOUNTINGS

Data sheet 1.44.00E

END CAP MOUNTING
Data sheet 1.44.010E-2
For mounting the drives on the end cap.

MID-SECTION SUPPORT

Data sheet 1.44.010E-7 For supporting long drives or mounting the linear drives on dovetail grooves.

MAGNETIC SWITCHES TYPE RS AND ES

Data sheet 1.44.030E For contactless position sensing of end stop and intermediate carrier positions.

MULTI-AXIS SYSTEMS Data sheet 1.38.001E

For modular assembly of linear drives up to multi-axis systems.

Cha	racteristics			
Cha	racteristics		Symbol	Unit Description
Gen	eral Features			
Seri	es			OSP-EBHD
Nam	ne			Linear Drive with Toothed Belt and integrated recirculating ball bearing guide
Mou	nting			See drawings
,	oient- perature range	$\frac{9}{9}_{\text{max}}$	°C °C	-30 +80
Weig	ght (mass)		kg	See table
Inst	allation			In any position
	Slotted profile			Extruded anodized aluminium
	Toothed belt			Steel-corded polyurethane
	Pulley			Aluminium
_	Guide			Recirculating Ball Bearing Guide
Materia	Guide rail			Hardened steel rail with high precision, accuracy class N
_	Guide carrier			Steel carrier with integrated wiper system, grease nipples, preloaded 0.02 x C, accuracy class H
	Sealing band			Hardened, corrosion resistant steel
	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Enca	apsulation class		IP	54

Weight (mass) and Inertia										
Series	Weight (m At stroke (ass)[kg]) m Add per met	re stroke Moving mass	Inertia [x 10 ⁻⁶ kgm ²] At stroke 0 m Add per metre stroke per kg r						
OSP-E20BHD	2.8	4	0.8	280	41	413				
OSP-E25BHD	4.3	4.5	1.5	1229	227	821				
OSP-E32BHD	8.8	7.8	2.6	3945	496	1459				
OSP-E50BHD	26	17	7.8	25678	1738	3103				
OSP-E20BHD*	4.3	4	1.5	540	41	413				
OSP-E25BHD*	6.7	4.5	2.8	2353	227	821				
OSP-E32BHD*	13.5	7.8	5.2	7733	496	1459				
OSP-E50BHD*	40	17	15	49180	1738	3103				

^{*} Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the linear drive. Check if mid-section supports are needed using the maximum allowable unsupported length graph on data sheet 1.15.002E-3.

At least one end cap must be secured to prevent axial sliding when midsection support is used.

Maintenance

Depending on operating conditions, inspection of the linear drive is recommended after 12 months or 3000 km operation.

Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Magnetic Switches see 1.44.030E Mountings and Accessories see 1.44.006E, 1.44.010E Multi-Axis Systems see 1.38.001E

Data Sheet No. 1.15.002E-1

Linear Drive with Toothed Belt

Integrated Recirculating Ball Bearing Guide Series OSP-E..BHD Size 20 to 50

Standard Versions

- Toothed Belt Drive with integrated Recirculating Ball Bearing Guide
- Drive Shaft with clamp shaft or plain shaft
- Choice of motor mounting side
- Dovetail profile for mounting of accessories and the drive itself

Options

- Tandem version for higher moments
- Bi-parting version for synchronised movements
- Integrated planetary gearbox
- Drive shaft with
- clamp shaft and plain shaft
- hollow shaft with keyway
- Special drive shaft versions on request

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended:

- Determination of the lever arm length I_x, I_y and I_z from m_e to the centre axis of the linear drive.
- 2. Calculation of the load F_x or F_y to the carrier caused by m_e $F = m_e \cdot g$
- 3. Calculation of the static and dynamic force F_A which must be transmitted by the toothed belt. $F_{A(horizontal)} = F_a + F_0 = m_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$ $F_{A(vertical)} = F_g + F_a + F_0$ $= m_g \cdot g + m_g \cdot a + M_0 \cdot 2\pi / U_{ZR}$
- 4. Calculation of all static and dynamic moments M_x , M_y and M_z which occur in the application. $M = F \cdot I$
- 5. Selection of maximum permissible loads via Table T3.
- Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- 8. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

- I = distance of a mass in the x-, y- and z-direction from the guide [m]
- m_e = external moved mass [kg]
- $m_{LA} = moved mass of linear drive [kg]$
- $m_g = total moved mass$ $<math>(m_e + m_{LA}) [kg]$
- $F_{x/y}$ = load excerted on the carrier in dependence of the installation position [N]
- F_A = action force [N]
- M_0 = no-load torque [Nm]
- U_{ZR} = circumference of the pulley (linear movement per revolution) [m]
- $g = gravity [m/s^2]$
- $a_{max} = maximum acceleration [m/s²]$

Performance Ov	Performance Overview T1										
Characteristics		Unit	Description	Description							
Series			OSP-E20BHD	OSP-E25BHD	OSP-E32BHD	OSP-E50BHD					
Max. speed		[m/s]	31)	5 ¹⁾	51)	51)					
Linear motion pof drive shaft	per revolution	[mm]	125	180	240	350					
Max. rpm on dr	[min ⁻¹]	2000	1700	1250	860						
Max. effective	< 1 m/s:	[N]	550	1070	1870	3120					
Action force	1-3 m/s:	[N]	450	890	1560	2660					
F _A at speed	> 3 m/s:	[N]	_	550	1030	1940					
No-load torque		[Nm]	0.6	1.2	2.2	3.2					
Max. accelerati	on/deceleration	[m/s ²]	50	50	50	50					
Repeatability	[mm/m]	±0.05	±0.05	±0.05	±0.05						
Max. standard s	stroke length	[mm]	5760 ²⁾	5700 ²⁾	5600 ²⁾	5500 ²⁾					

1) up to 10 m/s on request

2) longer strokes on request

	mum ed / S		nissib	le To	rque	on Dr	ive SI	naft							T2
OSP-E20BHD OSP-E25BHD							łD	0	SP-E	32BF	ID .	OSP-E50BHD			
Speed [m/s]	Speed Torque Stroke Torque Speed Torq [m/s] [Nm] [m] [Nm] [m/s] [N					Stroke [m]	Torque [Nm]	Speed [m/s]	Torque [Nm]	Stroke [m]	Moment [Nm]		Torque [Nm]	Stroke [m]	Torque [Nm]
1	11	1	11	1	31	1	31	1	71	1	71	1	174	1	174
2	10	2	11	2	28	2	31	2	65	2	71	2	159	2	174
3	9	3	8	3	25)	3	31	3	59	3	60	3	153	3	138
4		4	7	4	23	4	25	4	56	4	47	4	143	4	108
5		5	5	5	22	5	21)	5	52	5	38	5	135	5	89

Important:

The maximum permissible moment on the drive shaft is the lowest value of the speedor stroke-dependent moment value.

Example above:

OSP-E25BHD, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

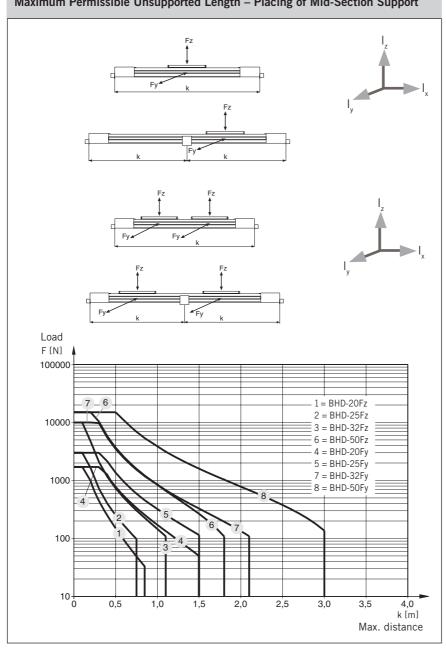
When sizing Bi-parting units: for ordering stroke see data sheet 1.15.002E-4.

Maximum Permissi	ble Loads				(T3)
Series	Max. appli Fy[N]	ed load Fz[N]	Max. mome Mx	nts [Nm] My	Mz
OSP-E20BHD	1600	1600	21	150	150
OSP-E25BHD	2000	3000	50	500	500
OSP-E32BHD	5000	10000	120	1000	1400
OSP-E50BHD	12000	15000	180	1800	2500

Combined Loads

If the linear drive is subjected to several forces, loads and moments at the same time, the maximum load is

calculated with the equation shown here. The maximum permissible loads must not be exceeded.



The total of the loads must not exceed >1 under any circumstances.

The distance (I, I, I,) for calculation of moments relates to the centre axis of the linear drive. $M = F \cdot I [Nm]$ Bending moments are $\begin{array}{l} M_x = M_x \, _{\text{static}} + M_x \, _{\text{dynamic}} \\ M_y = M_y \, _{\text{static}} + M_y \, _{\text{dynamic}} \\ M_z = M_z \, _{\text{static}} + M_z \, _{\text{dynamic}} \end{array}$ calculated from the centre of the linear drive and F indicates actual force.

Forces, loads and moments

Maximum Permissible Unsupported Length - Placing of Mid-Section Support

Maximum Permissible Unsupported Length

Stroke Length

The stroke lengths of the linear drives are available in multiples of 1 mm up to 5700 mm.

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.

Allow an additional safety clear-ance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

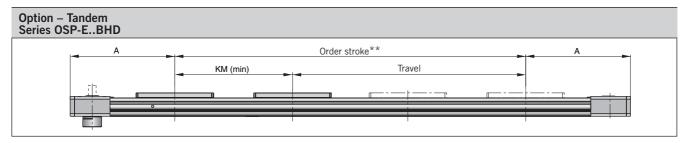
The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo

For advice, please contact your local Parker Origa technical support department.

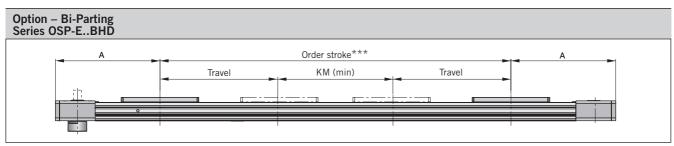
* For Bi-parting version the max. load (F) is the total load of both carriers $F = F_{carrier 1} + F_{carrier 2}$

k = Max. permissible distance between mountings/mid-section support for a given load F.

When loadings are below or up to the curve in the graph below the deflection will be max. 0.01 % of distance k.


Linear Drive with Toothed Belt and integrated Recirculating Ball Bearing Guide – Basic Unit Series OSP-E..BHD Drive Shaft versions with - clamp shaft Order stroke plain shaft or clamp shaft with plain shaft ØKR (Option) G x H (8x Mounting holes for motor flange Y x ZZ or external planetary gearbox 1) 10 threads X (4x) KU x KJ (4x) Hollow shaft with keyway (Option) 1) Note: Dimension Table [mm] The mounting holes for the coupling housing / motor KB* KC KU x KJ flange / gearbox are located on the opposite side to OSP-E20BHD 12H7 M6 x 8 13.8 4 65,7 the carrier (motor mounting standard). OSP-E25BHD 18.3 M8 x 8 16^{H7} 82 5 They also can be located on the same side as the carrier (motor mounting 180° standard). OSP-E32BHD 22H7 24.8 6 106 M10 x 12 KU x KJ (4x) OSP-E50BHD | 32^{H7} | 35.3 | 10 144 M12 x 19

* Note:


The mechanical end position must not be used as a mechanical end stop. Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

Order stroke = required travel + $2 \times \text{safety distance}$.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local Parker Origa representative.

** Order stroke = required travel + KM min + 2 x safety distance

*** Order stroke = 2 x required travel + KM min + 2 x safety distance

Dimension '	Dimension Table [mm]																											
Series	Α	В	С	E	GxH	J	K	M	S	٧	X	YxZZ	CE	CF	EC	EF	FB	FH	KF	KM _{min}	KM _{rec.}	KN	КО	KP	KR	KS	KT	KUxKJ
OSP-E20BHD	185	76.5	73	18	M5x8.5	155	21.1	27.6	67	51	30	M5x8	38	49	60	27	73	36	42.5	180	220	27	18	25	12 _{h7}	12 ^{H7}	65.7	M6x8
OSP-E25BHD	218	88	93	25	M5x10	178	21.5	31	85	64	40	M6x8	42	52.5	79	27	92	39.5	49	210	250	34	21.7	30	16 _{h7}	16 ^{H7}	82	M8x8
OSP-E32BHD	262	112	116	28	M6x12	218	28.5	38	100	64	40	M6x10	56	66.5	100	36	116	51.7	62	250	300	53	30	30	22 _{h7}	22 ^{H7}	106	M10x12
OSP-E50BHD	347	147	175	18	M6x12	288	43	49	124	90	60	M6x10	87	92.5	158	70	164	77	79.5	354	400	75	41	35	32 _{h7}	32 ^{H7}	144	M12x19

(Other dimensions for KS and KB for special drive shafts on request – see order instructions.)

Series OSP-E..BHD – with Integrated Planetary Gearbox (Option)

Performance Overview Characteristics Unit Description OSP-E25BHD OSP-E32BHD OSP-E50BHD Series Ratio (1-stage) 3/5/10 Max. axial load [N] 1550 1900 4000 24 Torsional rigidity (i=5) [Nm/arcmin] 3.3 9 Torsional rigidity (i=3/10) C_{t.21} 7.5 20.5 [Nm/arcmin] 2.8 Torsional backlash [arcmin] <12 [mm] 220 Linear motion 280 360 per revolution of drive shaft Nominal input speed [min-1] 3700 3400 2600 n_{1max} Max. input speed [min-1] 6000 No-load torque at Nominal input speed [Nm] < 0.14 < 0.51 <1.5 T₀₁₂ 20 000 Lifetime [h] Efficiency [%] >97 Noise level L_{PA} [db] <70 <72 <74 $(n_1 = 3000 \text{ min}^{-1})$

NA NA NC NC NC

Dimension Tab	Dimension Table [mm] and additional Weight											
Series NA NB NC Weight (Mass) [kg]												
OSP-E25BHD	49	43	76	2.6								
OSP-E32BHD	62	47	92	4.9								
OSP-E50BHD	79.5	49.5	121	9.6								

Data Sheet No. 1.15.002E-5

Integrated Planetary Gearbox

Features

- Highly compact and rigid solutio fully integrated in the drive cap housing
- Purpose designed for the BHD series.
- Available with three standard ratios (3, 5 and 10)
- Very low backlash
- A wide range of available motor flanges

Please contact your local Parker Origa technical support for available motor flanges.

For motors and controllers, see separate catalogue "Drive technology for electric linear drives OSP-E".

Material:

Aluminium (AL-H) / Steel (St-H)

Standard Version:

• Gearbox on opposite side to carrier.

Note:

When ordering, specify model/type of motor and manufacturer for correct motor flange.

Linear Drive with Toothed Belt and Integrated Roller Guide

Series OSP-E..BHD Size 25, 32, 50

Standard Versions

- Toothed Belt Drive with integrated Recirculating Ball Bearing Guide
- Drive Shaft with clamp shaft or plain shaft
- Choice of motor mounting side
- Dovetail profile for mounting of accessories and the drive itself

Options

- Tandem version for higher moments
- Bi-parting version for synchronised movements
- Integrated planetary gearbox
- Drive shaft with
- clamp shaft and plain shaft
- hollow shaft with keyway
- Special drive shaft versions on request

Char	acteristics			
Char	racteristics	Symbol	Unit	Description
Gene	eral Features	•		
Serie	es			OSP-EBHD
Nam	ie			Linear Drive with Toothed Belt and integrated Roller Guide
Mou	nting			see drawings
Amb Tem	vient peratur range	ϑ_{\max}^{\min}	°C	-30 +80
Weig	ght (Mass)		kg	see table
Insta	allation			In any position
	Slotted profile			Extruded anodized aluminium
	Toothed belt			Steel-corded polyurethane
	Pulley			Aluminium
a	Guide			Roller Guide
Materia	Guide rail			Aluminium
Š	Track			high alloyed steel
	Roller cartridge			Steel rollers in aluminium housing
	Sealing band			Hardened, corrosion resistant steel
	Screws, nuts			Zinc plated steel
	Mountings			Zinc plated steel and aluminium
Enca	apsulation class		IP	54

Weight (mass) and Inertia										
Series	Weight (m at stroke 0 m	ass)[kg] ad per metre stroke	Moving mass	Inertia [x 10 ⁻⁶ kgm ²] at stroke 0 m ad per metr						
OSP-E25BHD	3.8	4.3	1.0	984	197					
OSP-E32BHD	7.7	6.7	1.9	3498	438					
OSP-E50BHD	22.6	15.2	4.7	19690	1489					
OSP-E25BHD*	5.7	4.3	2.0	1805	197					
OSP-E32BHD*	11.3	6.7	3.8	6358	438					
OSP-E50BHD* 31.7 15.2 9.4 34274 1489										
*Varian Tandam and Di			9.4	34274	1409					

^{*}Version: Tandem and Bi-parting (Option)

Installation Instructions

Use the threaded holes in the end cap for mounting the linear drive. Check if mid-section supports are needed using the maximum allowable unsupported length graph on data sheet 1.15.002E-3.

At least one end cap must be secured to prevent axial sliding when midsection support is used.

Maintenance

All moving parts are lifetime-lubricated. Depending on operating conditions, inspection of the linear drive is recommended after 12 months or 3000 km operation.

Please refer to the operating instructions supplied with the drive.

First service start-up

The maximum values specified in the technical data sheet for the different products must not be exceeded. Before taking the linear drive machine into service, the user must ensure the adherence to the EC Machine Directive 91/368/EEC.

Magnetic Switches Proximity Sensors see 1.44.030E Mountings and Accessories see 1.44.006E, 1.44.010E Multi-Axis Connections see 1.38.001E

Performance Ov	Performance Overview T1											
Characteristics		Unit	Description									
Series			OSP-E25BHD	OSP-E32BHD	OSP-E50BHD							
Max. speed		[m/s]	10	10	10							
Linear motion p drive shaft	er revolution	[mm]	180	240	350							
Max. rpm. drive	shaft	[min ⁻¹]	3000	2500	1700							
Max. effective	< 1 m/s:	[N]	1070	1870	3120							
action force F _A	1-3 m/s:	[N]	890	1560	2660							
at speed	> 3-10 m/s:	[N]	550	1030	1940							
No-load torque I	[Nm]	1.2	2.2	3.2								
Max. acceleration	n/deceleration	[m/s ²]	40	40	40							
Repeatability		[mm/m]	±0.05	±0.05	±0.05							
Max. standard s	troke length	[mm]	7000	7000	7000							

	imum P ed and S		ible Tor	que on	Drive	Shaft					(T2)
	OSP-E	25BH	D	OSP-	E32BH	D		OSP-E			
Speed [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]	Speed. [m/s]	Torque [Nm]	Stroke [m]	Torque [Nm]
1 2 3 4 5 6 7 8 9 10	31 28 25 23 22 21 19 18 17 16	1 2 3 4 5 6 7	31 31 25 21 17 15	1 2 3 4 5 6 7 8 9	71 65 59 56 52 50 47 46 44 39	1 2 3 4 5 6 7	71 71 60 47 38 32 28	1 2 3 4 5 6 7 8 9	174 159 153 143 135 132 126 120 116 108	1 2 3 4 5 6 7	174 174 138 108 89 76 66

Important:

The maximum permissible moment on the drive shaft is the lowest value of the speedor stroke-dependent moment value.

Example above:

OSP- $\dot{E}25BHD$, stroke 5 m, required speed 3 m/s from table T2 speed 3 m/s gives 25 Nm and stroke 5 m gives 21 Nm. Max. torque for this application is 21 Nm.

When sizing Bi-parting units: for ordering stroke see data sheet 1.15.002E-9.

Maxim	Maximum Permissible Loads											
Series		Max. applied load Fy, Fz [N]	Max. mome Mx	nts [Nm] My	Mz							
OSP-E	25BHD	986	11	64	64							
OSP-E	32BHD	1348	19	115	115							
OSP-E	50BHD	3704	87	365	365							

Sizing Performance Overview Maximum Loadings

Sizing of Linear Drive

The following steps are recommended:

- 1. Determination of the lever arm length I_x, I_y and I_z from m_e to the centre axis of the linear drive.
- 2. Calculation of the load $\rm F_x$ or $\rm F_y$ to the carrier caused by $\rm m_e$ $\rm F = m_e \cdot g$
- 3. Calculation of the static and dynamic force F_A which must be transmitted by the toothed belt.

$$\begin{array}{ll} F_{A(horizontal)} & = & F_a + F_0 \\ & = & m_g \cdot a + M_0 \cdot 2\pi \ / \ U_{ZR} \end{array}$$

$$F_{A(vertical)} & = F_g + F_a + F_0 \\ & = & m_g \cdot g + m_g \cdot a + M_0 \cdot 2\pi \ / \ U_{ZR} \end{array}$$

- 4. Calculation of all static and dynamic bending moments M_x , M_y and M_z which occur in the application
- M = F · I5. Selection of maximum permissible loads via Table T3.
- 6. Calculation and checking of the combined load, which must not be higher than 1.
- 7. Checking of the maximum torque that occurs at the drive shaft in Table T2.
- 8. Checking of the required action force F_A with the permissible load value from Table T1.

For motor sizing, the effective torque must be determined, taking into account the cycle time.

Legend

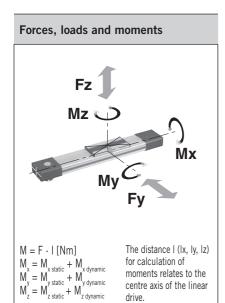
I = distance of a mass in the x-, y- and z-direction from the guide [m]

 m_e = external moved mass [kg]

 $m_{LA} = moved mass of linear drive [kg]$

 $m_g^{} = total moved mass$ $<math>(m_e^{} + m_{LA}^{}) [kg]$

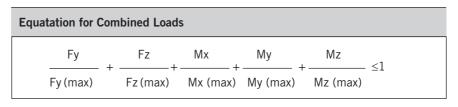
 $F_{x/y}$ = load excerted on the carrier in dependence of the installation position [N]


 F_A = action force [N]

 M_0 = no-load torque [Nm]

U_{ZR} = circumference of the pulley (linear movement per revolution) [m]

 $g = gravity [m/s^2]$


 $a_{max.} = maximum acceleration [m/s^2]$

Combined Loads

If the linear drive is subjected to several forces, loads and moments at the same time, the maximum load is

calculated with the equation shown here. The maximum permissible loads must not be exceeded.

The total of the loads must not exceed >1 under any circumstances.

Maximum Permissible Unsupported Length

Stroke Length

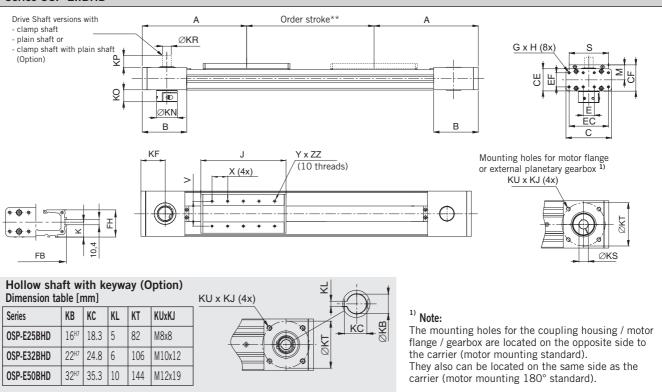
The stroke lengths of the linear drives are available in multiples of 1 mm up to 5700 mm.

Other stroke lengths are available on request.

The end of stroke must not be used as a mechanical stop.

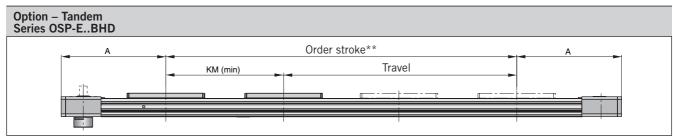
Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

The use of an AC motor with frequency converter normally requires a larger clearance than that required for servo systems.

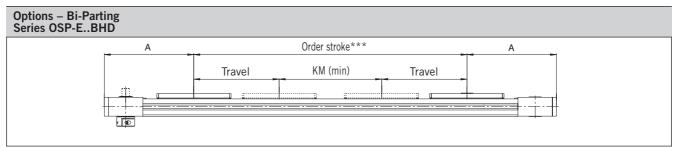

For advice, please contact your local Parker Origa technical support department.

- * For the bi-parting version the maximum load (F) complies with the total of the load at both carriers. $F = F_{carriage \ 1} + F_{carriage \ 2}$
- k = Maximum permissible distance between mountings/mid-section support for a given load F.

If the loads are below or up to the curve in the graph the deflection will be max. 0.01 % of distance k.


* Note

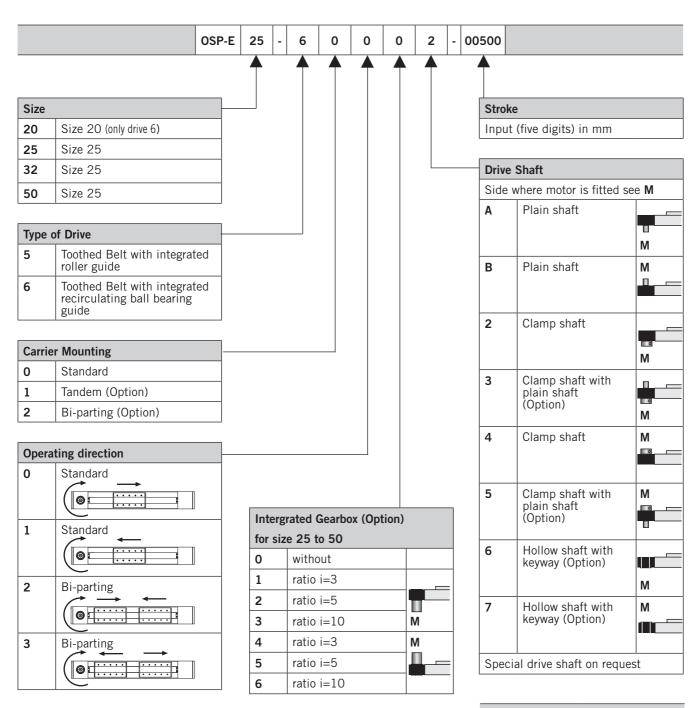
The mechanical end position must not be used as a mechancial end stop.


Allow an additional safety clearance at both ends equivalent to the linear movement of one revolution of the drive shaft, but at least 100 mm.

Order stroke = required travel + 2×3 x safety distance.

The use of an AC motor with frequency converter normally requires a larger safety clearance than that required for servo systems. For further information please contact you local Parker Origa representative.

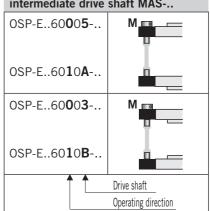
** Order stroke = required travel + KM min + 2 x safety distance



*** Order stroke = 2 x required travel + KM min + 2 x safety distance

Dimension Table [mm]																												
Series	Α	В	С	Ε	GxH	J	K	M	S	٧	X	YxZZ	CE	CF	EC	EF	FB	FH	KF	KM _{min}	KM _{rec.}	KN	КО	KP	KR	KS	KT	KUxKJ
OSP-E25BHD	218	88	93	25	M5x10	178	21.5	31	85	64	40	M6x8	42	52.5	79	27	92	39.5	49	210	250	34	21.7	30	16 _{h7}	16 ^{H7}	82	M8x8
OSP-E32BHD	262	112	116	28	M6x12	218	28.5	38	100	64	40	M6x10	56	66.5	100	36	116	51.7	62	250	300	53	30	30	22 _{h7}	22 ^{H7}	106	M10x12
OSP-E50BHD	347	147	175	18	M6x12	263	43	49	124	90	60	M6x10	87	92.5	158	70	164	77	79.5	295	350	75	41	35	32 _{h7}	32 ^{H7}	144	M12x19

(Other dimensions for KS and KB for special drive shafts on request – see order instructions.)


Order Instructions

Accessories - please order separately

Description	Data Sheet No.					
Coupling Housing	1.44.006E-2					
Motor Flange for Planetary Gearbox LP	1.44.006E-2					
End Cap Mountings	1.44.010E-2, -3					
Mid-Section Support	1.44.010E-8					
Adaptor Profile	1.44.010E-10					
T-Nut Profile	1.44.010E-11					
Magnetic Switches	1.44.030E					
Multi-Axis Systems for linear drives	1.38.001E					
Drive Systems and components for electric linear drives OSP-E	A4P019E					

OSP-E.. BHD as parallel drive with intermediate drive shaft MAS-..

Data Sheet No. 1.15.002E-10