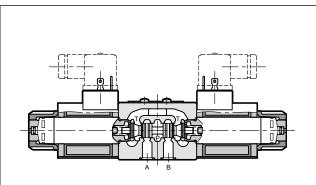


SOLENOID OPERATED DIRECTIONAL CONTROL VALVE

SUBPLATE MOUNTING ISO 4401-03

p max 350 barQ max 100 l/min

MOUNTING INTERFACE

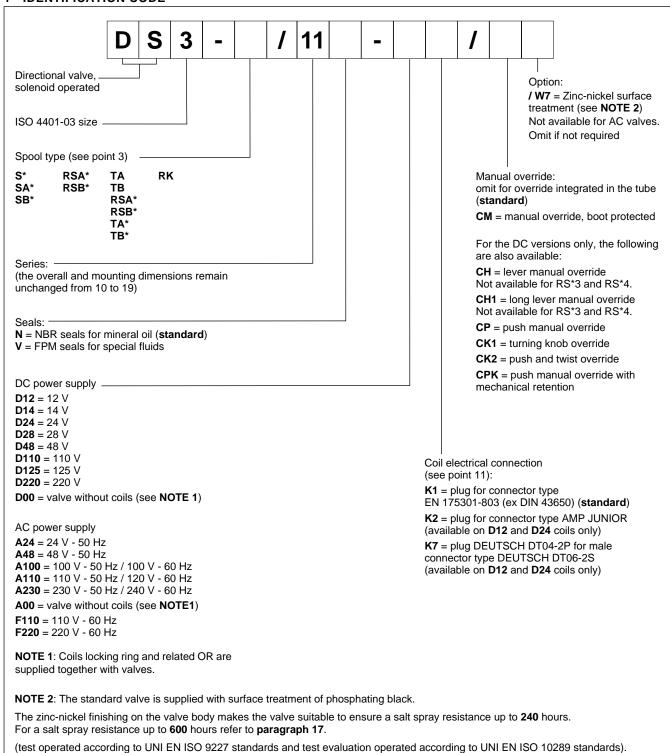


PERFORMANCES

(obtained with mineral oil with viscosity of 36 cSt at 50°C)

	•		1	
Maximum operating pressure:		CC	CA	
- P - A - B ports	bar	350		
- T port			160	
Maximum flowrate	l/min	I/min 100		
Pressure drops ∆p-Q		see point 4		
Operating limits		see point 6		
Electrical features	see point 7			
Electrical connections	see point 11			
Ambient temperature range	°C	-20 / +50		
Fluid temperature range	°C	-20 /	+80	
Fluid viscosity range	cSt	10 ÷	400	
Fluid contamination degree	1	to ISO 4406: lass 20/18/15		
Recommended viscosity	cSt	2	5	
Mass: single solenoid valve double solenoid valve	kg	1,5 2	1,4 2	

OPERATING PRINCIPLE

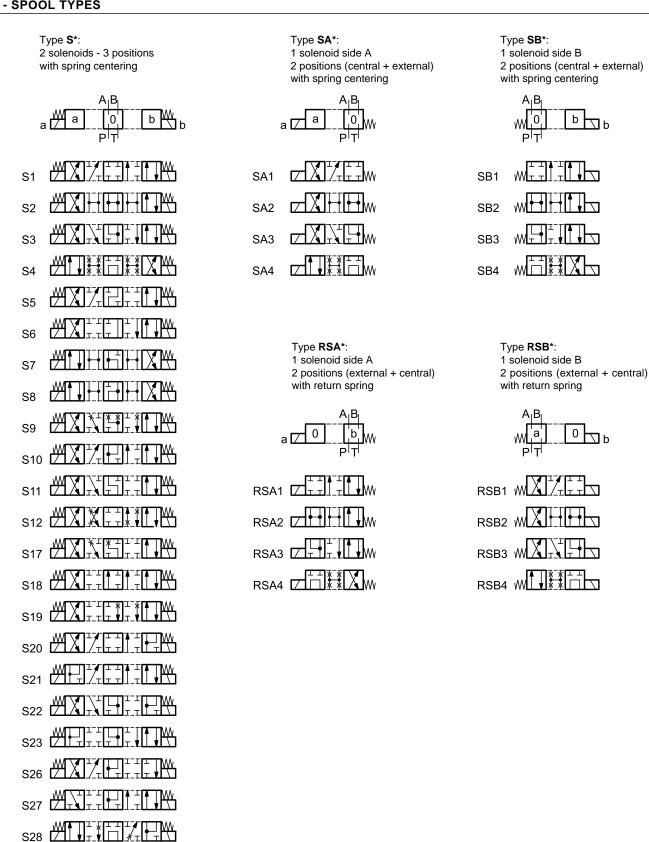

- Solenoid actuated directional control valve, direct operated, with mounting surface according to ISO 4401-03 standards.
- The valve is supplied with 3- or 4-port design, with 2 or 3 positions with a wide range of spools.
- The valve body is made with high strength iron castings provided with wide internal paths in order to minimize
 - the flow pressure drop. Wet armature solenoids with interchangeable coils are used (for further information on solenoids see point 7).
 - The valve is available with DC or AC solenoids. DC solenoids can also be fed with AC power supply, by using connectors with a built-in rectifier bridge (see points 6.4 and 7.2).
 - The DC valve is also available in a soft-shifting version (see point 14).
 - The DC valve is also available with zinc-nickel coating that ensures a salt spray resistance up to 600 hours.
 - It is available a version with UL certified 24V DC coils for Canada and United States. (see point 15).
 - Alternative to the standard manual override there are lever, push, knob, push and twist, boot and mechanical detent devices.

41 150/123 ED 1/18

DS₃

1 - IDENTIFICATION CODE

2 - HYDRAULIC FLUIDS

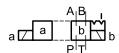

Use mineral oil-based hydraulic fluids HL or HM type, according to ISO 6743-4. For these fluids, use NBR seals (code N). For fluids HFDR type (phosphate esters) use FPM seals (code V). For the use of other fluid types such as HFA, HFB, HFC, please consult our technical department.

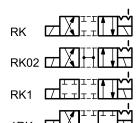
Using fluids at temperatures higher than 80 °C causes a faster degradation of the fluid and of the seals characteristics. The fluid must be preserved in its physical and chemical characteristics.

41 150/123 ED **2/18**

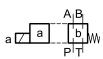
3 - SPOOL TYPES

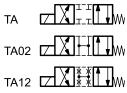
Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

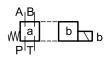

S29

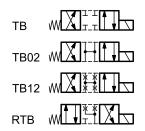

D

DS3

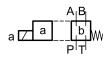

Type RK:


2 solenoids - 2 positions with mechanical retention


Type **TA**: 1 solenoid side A 2 external positions with return spring



Type **TB**: 1 solenoid side B 2 external positions with return spring

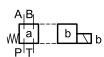


Type TA*:

1 solenoid side A

2 positions with return spring

TA23


23TA 7 7 1 1 W

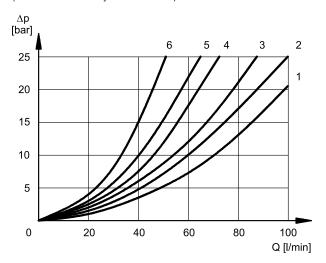
TA30 Z T T T W

Type TB*:

1 solenoid side B

2 positions with return spring

TB23 W TTTT


23TB W 7 T T T

Besides the diagrams shown, which are the most frequently used, other special versions are available: consult our technical department for their identification, feasibility and operating limits.

4 - PRESSURE DROPS Δp -Q

(obtained with viscosity 36 cSt at 50 °C)

Refer to curve 5 for the pressure drops between working lines A and B of the spools S10, S20, S21, S22 and S23 used in regenerative schemes.

Refer to curve 3 for pressure drop P \rightarrow T of the TA33 / TB33 spool.

ENERGIZED POSITION

	F	LOW DI	RECTIO	N
SPOOL TYPE	P→A	Р→В	A→T	В→Т
	Cl	JRVES C	ON GRAF	PH
S1, SA1, SB1	2	2	3	3
S2, SA2, SB2	1	1	3	3
S3, SA3, SB3, RSA3, RSB3	3	3	1	1
S4, SA4, SB4, RSA4, RSB4	5	5	5	5
S5	2	1	3	3
S6	2	2	3	1
S7, S8	4	5	5	5
S9	2	2	3	3
S10	1	3	1	3
S11	2	2	1	3
S12, S17, S19	2	2	3	3
S18	1	2	3	3
S20, S22	1	5	2	
S21, S23	5	1		2
S28	6	5	-	6
S29	5	6	6	-
S59	3	3	-	-
TA, TB	3	3	3	3
RTA	2	3	3	2
RTB	3	2	2	3
TA02, TB02	2	2	2	2
TA23, TB23	3	3		
TA33, TB33			3	2
RK, RK02, RK1, 1RK	2	2	2	2

DE-ENERGIZED POSITION

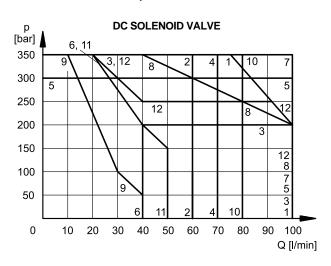
	1				
	FLOW DIRECTION				
SPOOL TYPE	P→A	Р→В	A→T	В→Т	P→T
		CURVI	ES ON C	SRAPH	
S2, SA2, SB2					2
S3, SA3, SB3, RSA3, RSB3			3	3	
S4, SA4, SB4, RSA4, RSB4					3
S5		4			
S6				3	
S7, S8			6	6	3
S10	3	3			
S11			3		
S18	4				
S22, S23			3	3	
S28, S29				6	

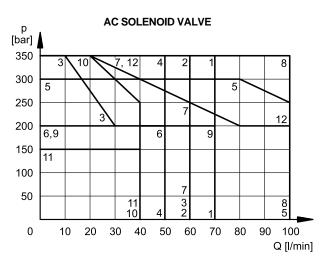
5 - SWITCHING TIMES

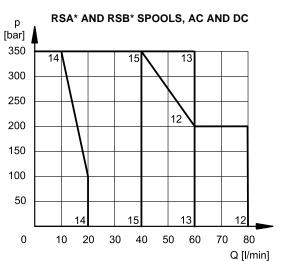
The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50° C.

SPOOL TYPE	TIMES	6 [ms]
SI OOL III L	ENERGIZING	DE-ENERGIZING
CC	25 ÷ 75	15 ÷ 25
CA	10 ÷ 25	15 ÷ 40

41 150/123 ED 5/18




6 - OPERATING LIMITS


The curves define the flow rate operating fields according to the valve pressure of the different versions. The values have been obtained according to ISO 6403 norm with solenoids at rated temperature and supplied with voltage equal to 90% of the nominal voltage. The value have been obtained with mineral oil, viscosity 36 cSt, temperature 50 °C and filtration according to ISO 4406:1999 class 18/16/13.

The limits for TA02 and TA spools refer to the 4-port operation. The operating limits of a 4-port valve in 3-port operation or with port A or B plugged or without flow are shown in the chart on the next page. The performance of the DC solenoid powered by AC with rectifier connectors are at point 6.4. The performances of the soft-shift valve are shown at point 14.

6.1 - Valves in standard operation

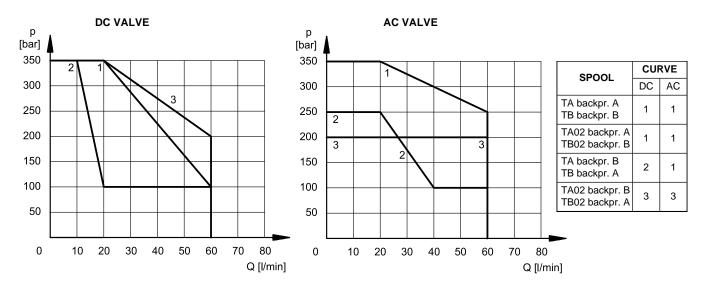
DC SOLENOID VALVE

opool.	CURVE		
SPOOL	P→A	Р→В	
S1,SA1,SB1	1	1	
S2, SA2, SB2	2	2	
S3, SA3, SB3	3	3	
S4, SA4, SB4	4	4	
S5	5	5	
S6	4	6	
S7	4	4	
S8	4	4	
S9	7	7	
S10	7	7	
S11	4	6	
S12	1	1	
S17	4	4	
S18	5	5	
S19	4	4	
S20	6*	6	
S21	6	6*	
S22	6	6	
S23	6	6	
S28	9*	9*	
S29	9*	9*	
S59	10	10	
TA, TB	7	7	
TA02, TB02	8	8	
TA30	1	-	
RTA, RTB	11	11	
TA23, TB23	2	2	
TA33, TB33	12	12	
RK	7	7	
RK02	8	8	
RK1, 1RK	7	7	

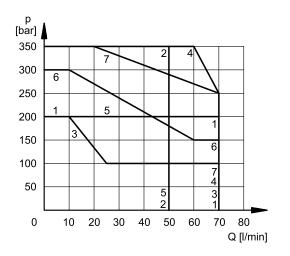
AC SOLENOID VALVE

	CIT	RVE
SPOOL	P→A	P→B
S1,SA1,SB1	1	1
S2, SA2, SB2	2	2
S3, SA3, SB3	3	3
S4, SA4, SB4	2	2
S5	5	5
S6	6	6
S7	4	4
S8	4	4
S9	7	7
S10	8	8
S11	6	6
S12	2	2
S17	7	7
S18	5	5
S19	7	7
S20	10*	10
S21	10	10*
S22	10*	10
S23	10	11*
S28	> <	> <
S29	$\supset \subset$	$\supset \subset$
S59		
TA, TB	1	1
TA02, TB02	1	1
TA30	5	-
RTA, RTB	11	11
TA23, TB23	2	2
TA33, TB33	12	12
RK	8	8
RK02	9	9
RK1, 1RK	8	8

^{*} Performance obtained for a valve with A and B lines connected the one to the piston-side chamber and the other to the rod-side chamber of a double-acting cylinder with area ratio 2:1.

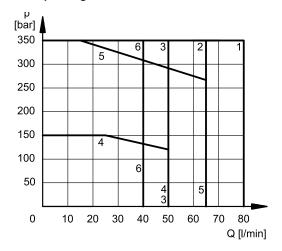

SPOOL	CURVE
RSA1, RSB1	12
RSA2, RSB2	13
RSA3, RSB3	14
RSA4, RSB4	15

41 150/123 ED 6/18



6.2 - 4-port valve in 3-port operation

Operating limits of a 4-port valve in 3-port operation or with port A or B plugged or without flow.



6.3 - AC solenoid valve with coil A110 fed with 110V - 60 Hz

SPOOL	CUF	RVE
3FOOL	P→A	P→B
S1,SA1, SB1	1	1
S2, SA2, SB2	2	2
S3, SA3, SB3	3	3
S4, SA4, SB4	4	4
S9	5	5
TA, TB	2	2
RK	6	6

6.4 - Operating limits for DC solenoid valves fed with AC with rectifier connectors

SPOOL	CUF	RVE
SPOOL	P→A	Р→В
S1, SA1, SB1	2	2
S2, SA2, SB2	3	3
S3, SA3, SB3	4	4
S4, SA4, SB4	2	2
S9	5	5
TA, TB	6	6
RK	1	1

41 150/123 ED **7/18**

7 - ELECTRICAL FEATURES

7.1 - Solenoids

These are essentially made up of two parts: tube and coil. The tube is threaded into the valve body and includes the armature that moves immersed in oil, without wear. The inner part, in contact with the oil in the return line, ensures heat dissipation. The coil is fastened to the tube by a threaded ring, and can be rotated 360°, to suit the available space.

Protection from atmospheric agents IEC 60529

The IP protection degree is guaranteed only with both valve and connectors of an equivalent IP degree, correctly connected and installed.

electric connection	electric connection protection	whole valve protection
K1	IP65	
K2	IP65/67	IP65
К7	IP65/67	

SUPPLY VOLTAGE FLUCTUATION	± 10% Vnom
MAX SWITCH ON FREQUENCY	18.000 ins/hr
DUTY CYCLE	100%
ELECTROMAGNETIC COMPATIBILITY (EMC) (NOTE)	In compliance with 2014/30/EU
LOW VOLTAGE	In compliance with 2014/35/EU
CLASS OF PROTECTION Coil insulation (VDE 0580) Impregnation: DC valve	class H class F class H

NOTE: In order to further reduce the emissions, with DC supply, use of type H connectors is recommended. These prevent voltage peaks on opening of the coil supply electrical circuit (see cat. 49 000).

7.2 - Current and absorbed power for DC solenoid valve

The table shows current and power consumption values of the DC coils.

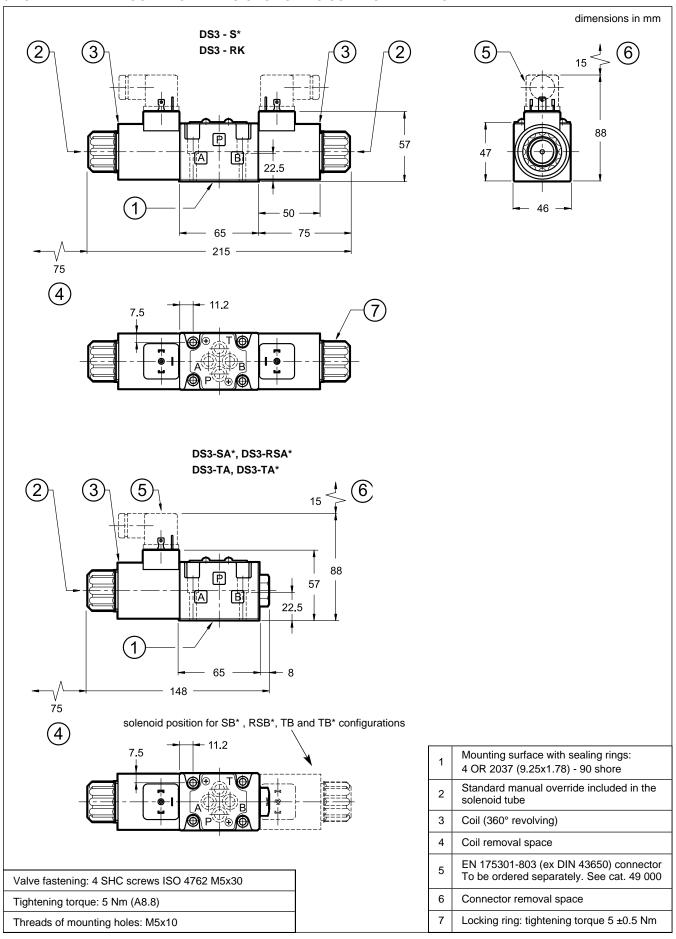
Using connectors type 'D' or 'D1'(see cat. 49 000) with embedded bridge rectifier it is possible to feed DC coils with alternating current (50 or 60 Hz), considering a reduction of the operating limits (see diagram at section 6.4).

Coils for direct current (values ±10%)

	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt [W]	K1	Coil code K2	K7
D12	12	4,4	2,72	32,7	1903080	1903100	1902940
D14	14	7,2	1.93	27	1903086		
D24	24	18,6	1,29	31	1903081	1903101	1902941
D28	28	26	1,11	31	1903082		
D48	48	78,6	0,61	29,5	1903083		
D110	110	423	0,26	28,2	1903464		
D125	125	550	0,23	28,6	1903467		
D220	220	1692	0,13	28,2	1903465		

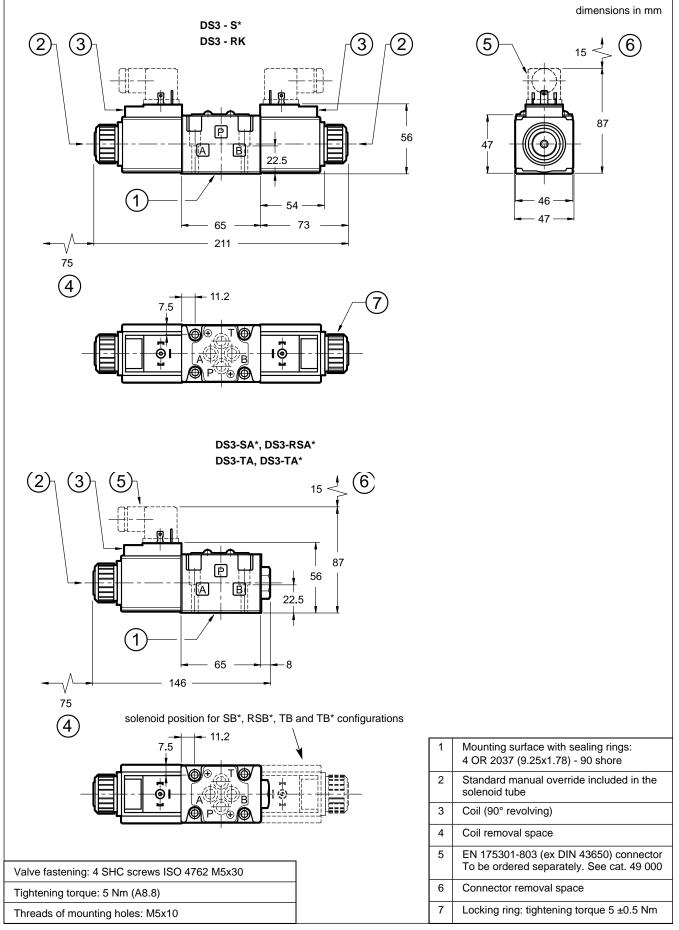
7.3 - Current and absorbed power for AC solenoid valve

The table shows current and power consumption values at inrush and at holding, for AC coils.


Coils for alternating current (values \pm 5%)

Suffix	Nominal Voltage [V]	Freq.	Resistance at 20°C [Ω]	Current consumption at inrush [A]	Current consumption at holding [A]	Power consumption at inrush [VA]	Power consumption at holding [VA]	Coil Code K1
A24	24	50	1,69	5,81	1,32	139	32	1902830
A48	48	- 50	6,02	3,78	0,86	182	41	1902831
A100	100V-50Hz		23,3	2,11	0,48	211	48	1902836
ATOU	100V-60Hz		23,3	1,63	0,37	163	37	1902636
A110	110V-50Hz	50/60	33	1,76	0,40	194	44	1902832
AIIU	120V-60Hz	30/60	33	1,54	0,35	185	42	1902032
A230	230V-50Hz]	135	0,92	0,21	213	48	1902833
AZJU	240V-60Hz		133	0,79	0,18	190	43	1902033
F110	110	- 60	28,5	1,45	0,33	160	36	1902834
F220	220	1 00	103	0,92	0,21	203	46	1902835

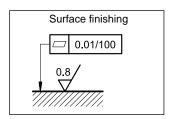
41 150/123 ED **8/18**


8 - OVERALL AND MOUNTING DIMENSIONS FOR DC SOLENOID VALVES

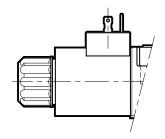
41 150/123 ED 9/18

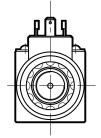
9 - OVERALL AND MOUNTING DIMENSIONS FOR AC SOLENOID VALVES

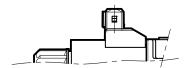
41 150/123 ED 10/18

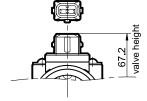

DS3

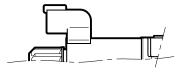
10 - INSTALLATION

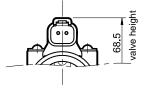

Configurations with centering and return springs can be mounted in any position; type RK valves - without springs and with mechanical detent - must be mounted with the longitudinal axis horizontal.

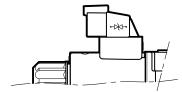

Valve fixing takes place by means of screws or tie rods, with the valve mounted on a lapped surface, with values of planarity and smoothness that are equal to or better than those indicated in the drawing. If the minimum values of planarity and/or smoothness are not met, fluid leakages between valve and mounting surface can easily occur.

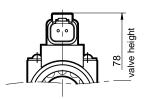

11 - ELECTRIC CONNECTIONS


connection for EN 175301-803 (ex DIN 43650) connector code **K1** (standard) code **WK1** (W7 version only)




connection for AMP JUNIOR connector code **K2**

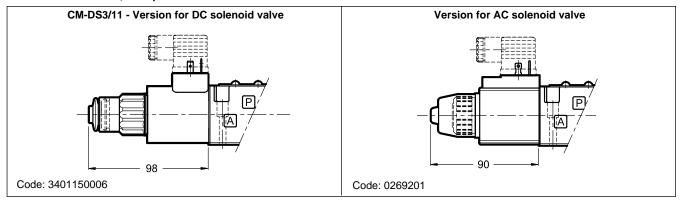



connection for DEUTSCH DT06-2S male connector code **K7**

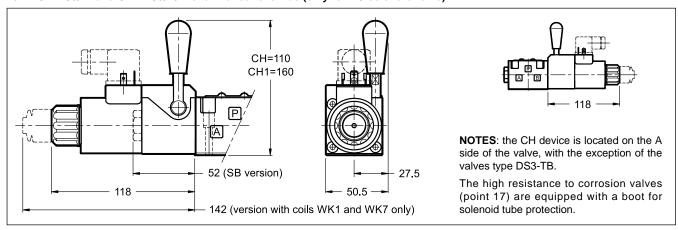
connection for DEUTSCH DT06-2S male connector code **WK7** (W7 version only) code **WK7D** (W7 version only - coil with diode)

12 - ELECTRIC CONNECTORS

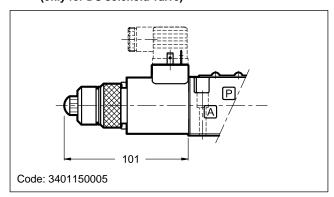
Solenoid operated valves are delivered without connectors. Connectors type EN 175301-803 (ex DIN 43650) for K1 connections can be ordered separately. See catalogue 49 000.

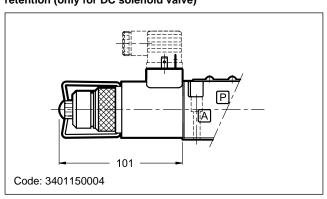

41 150/123 ED 11/18

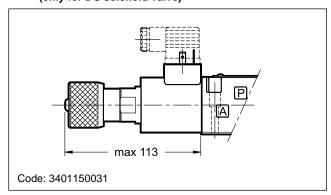
DS3

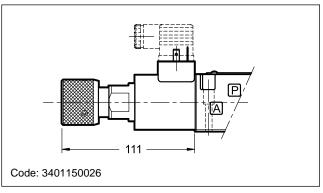


13 - MANUAL OVERRIDES


13.1 - Manual override, boot protected

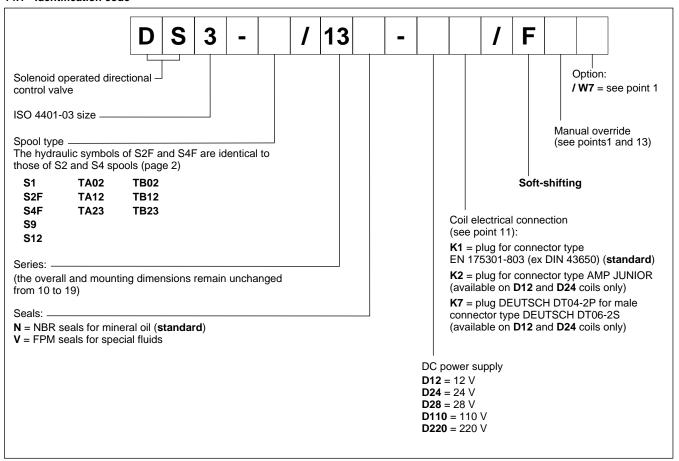

13.2 - CH-DS3/11 and CH1-DS3/10 Lever manual override (only for DC solenoid valve)


13.3 - CP-DS3/10 Push manual override (only for DC solenoid valve)


13.5 - CPK-DS3/10 Push manual override with mechanical retention (only for DC solenoid valve)

13.4 - CK1-DS3/14 Knob manual override, turning (only for DC solenoid valve)

13.6 - CK2-DS3/12 Push and twist manual override (only for DC solenoid valve)

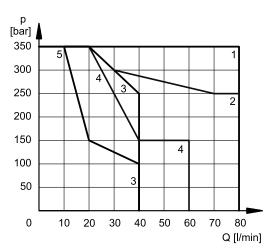


41 150/123 ED 12/18

14 - SOFT-SHIFT VERSION FOR DC VALVE

14.1 - Identification code

This version enables hydraulic actuators to perform a smooth start and stop by reducing the speed of movement of the valve spool.

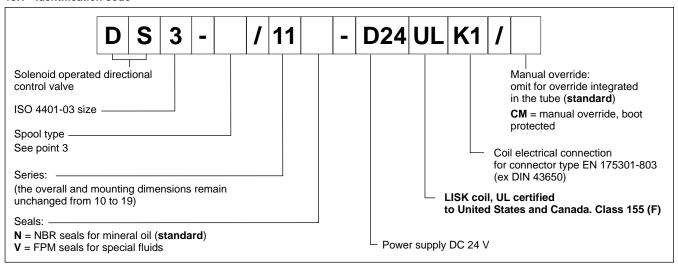

In this version, the S9 spool must be used instead of the S3 type. $\label{eq:spool}$

The diagram on the side shows the operating limits of the spools available in the soft-shifting version, while the table shows the switching times.

The values indicated are obtained according to ISO 6403 standard, with mineral oil viscosity 36 cSt at 50°C.

The shifting time and characteristics curves are influenced by the viscosity (and thus by the temperature) of the operating fluid. Moreover, times can vary according to the flow rate and operating pressure values of the valve.

For correct operation of the soft-shifting ensure the solenoid tubes are always filled with fluid. At this matter, we recommend to install a backpressure valve set at $1 \div 2$ bar on T line.


SPOOL	CURVE	TIMES [ms]			
		ENERGIZING	DE-ENERGIZING		
S1, S12	1	350	200 ÷ 300		
S2F	2	200	300 ÷ 400		
S4F	3	350	150 ÷ 300		
S9	1	400	200 ÷ 300		
TA02, TB02	4	180	200 ÷ 300		
TA12, TB12	5	180	200 ÷ 300		
TA23, TB23		300	200 ÷ 300		

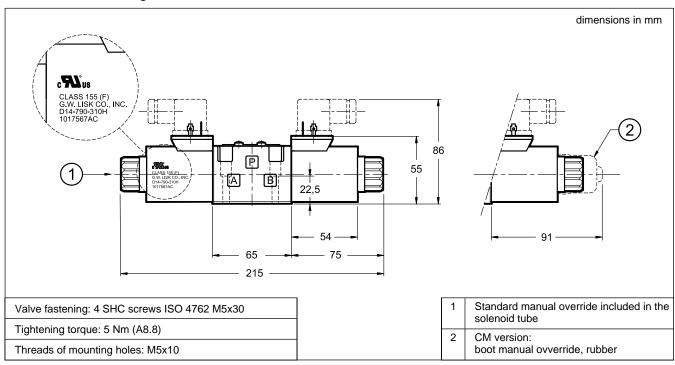
41 150/123 ED 13/18

15 - VERSION WITH UL CERTIFIED COILS

15.1 - Identification code

15.2 - UL file number

The UL database website provides informations about the certification, by entering the code MH29222 in the 'UL file number' field.

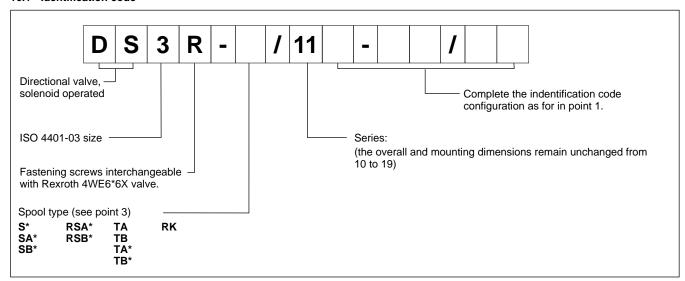

15.3 - Electrical features

(values ± 10%)

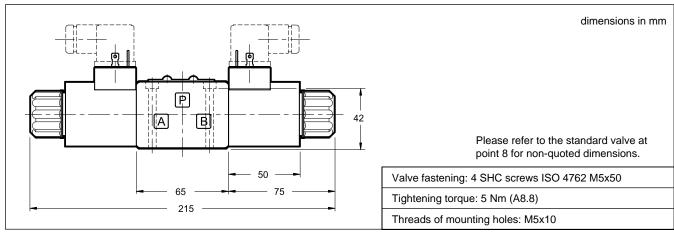
	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt. [A]	Power consumpt. [W]	Coil code
D24ULK1	24	19.2	1.25	30	1903341

NOTE: Valves with UL coils must be ordered complete. The UL coils are not interchangeable with those of standard valves.

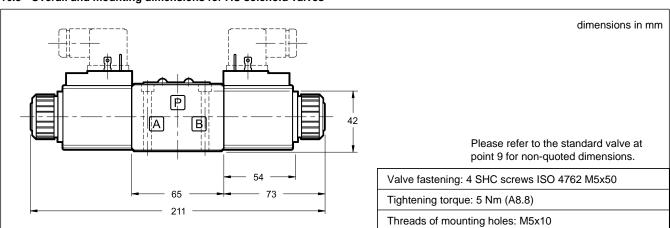
15.4 - Overall and mounting dimensions



41 150/123 ED 14/18

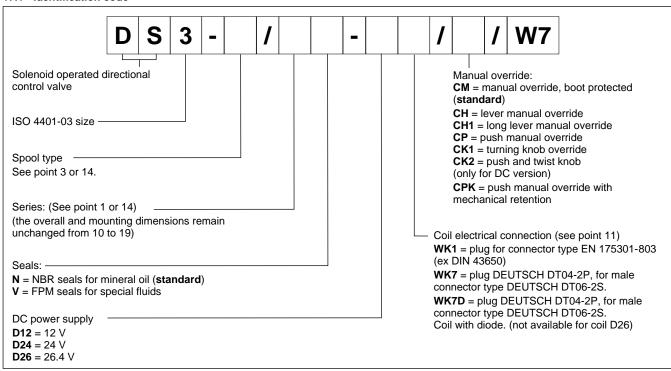


16 - VERSION WITH FIXING INTERCHANGEABLE WITH 4WE6*6X REXROTH


16.1 - Identification code

16.2 - Overall and mounting dimensions for DC solenoid valves

16.3 - Overall and mounting dimensions for AC solenoid valves



41 150/123 ED 15/18

DS3

17 - HIGH IP DEGREE AND CORROSION RESISTANCE VERSION

17.1 - Identification code

17.2 - Corrosion resistance

This version features the zinc-nickel coating on all exposed metal parts of the valve, making it resistant to exposure to the salt spray for **600** hours (test performed according to UNI EN ISO 9227 and assessment test performed according to UNI EN ISO 10289).

17.3 - DC coils

The coils feature a zinc-nickel surface treatment.

The WK7D coil includes a suppressor diode of pulses for protection from voltage peaks during switching. During the switching the diode significantly reduces the energy released by the winding, by limiting the voltage to 31.4V in the D12 coil and to 58.9 V in the D24 coil.

(values ±10%)

	Nominal voltage [V]	Resistance at 20°C [Ω]	Current consumpt.	Power consumpt.	WK1	Coil code WK7	WK7D
D12	12	4.4	2.72	32.7	3984000001	3984000101	3984000111
D24	24	18.6	1.29	31	3984000002	3984000102	3984000112
D26	26.4	21.8	1.21	32	3984000003	3984000103	-

17.4 - Protection from atmospheric agents IEC 60529

The IP protection degree is guaranteed only with both valve and connectors of an equivalent IP degree, correctly connected and installed.

electric connection	electric connection protection	whole valve protection	
WK1	IP66	IP66	
WK7	IP66/IP68/IP69 IP69K*	IP66/IP68/IP69 IP69K*	
WK7D	IP66/IP68/IP69 IP69K*	IP66/IP68/IP69 IP69K*	

(*) The IP69K protection degree is not taken into account in IEC 60529 but it is included in ISO 20653.

NOTE: As regards the liquid ingress protection (second digit), there are three means of protection.

Codes from 1 to 6 are related to water jets.

Rates 7 and 8 are related to immersion.

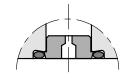
Rate 9 is reserved for high pressure and temperature water jets.

This means that IPX6 covers all the lower steps, rate IPX8 covers IPX7 but not IPX6 and lower, instead IPX9 does not cover any of them.

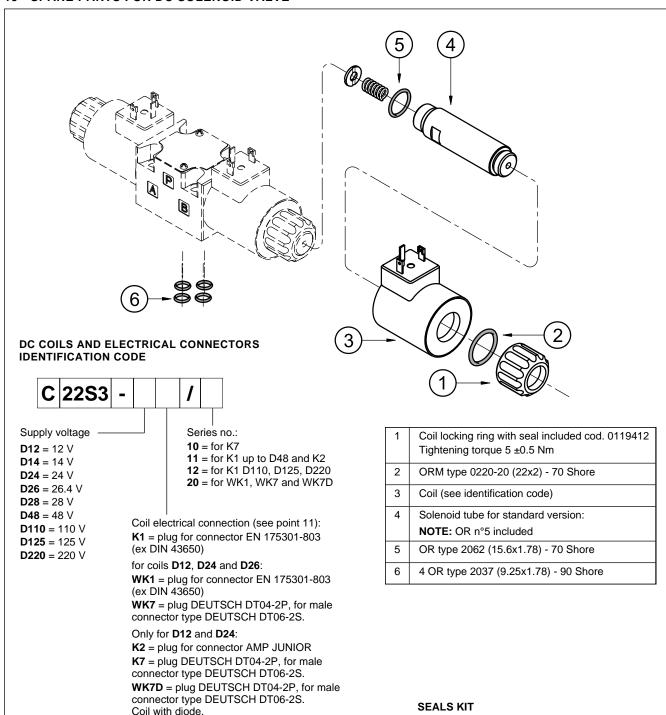
Whether a device meets two types of protection requirements it must be indicated by listing both the tests separated by a slash.

(E.g. a marking of an equipment covered both by temporary immersion and water jets is IP66/IP68).

41 150/123 ED 16/18


18 - PORT RESTRICTORS

Port restrictors are recommended if flow variations which exceed the valve performance limit during the switching processes occur, or for circuit dampening.


Port restrictor plugs can be ordered separately with the part numbers shown at left.

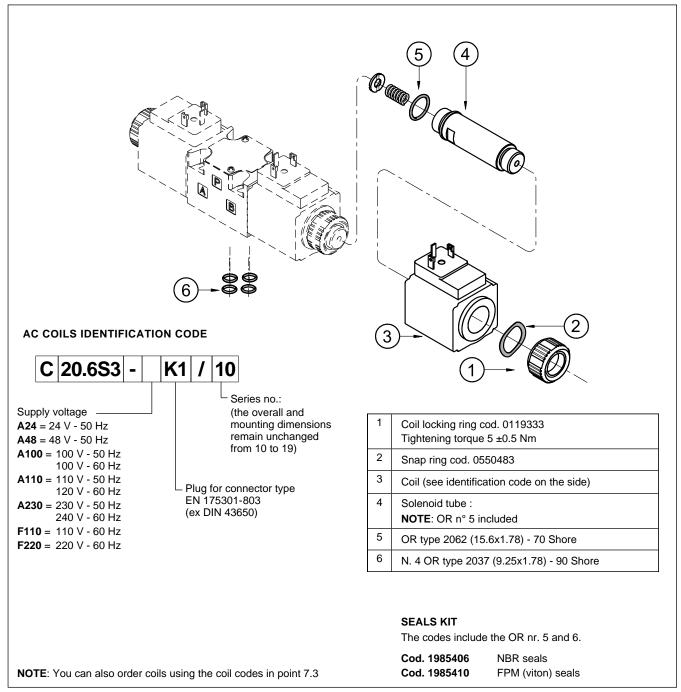
Ø (mm)	part number
blank	0144162
0.6	0144163
0.8	0144033
1	0144034

Ø (mm)	part number
1.2	0144035
1.5	0144036
1.8	0144164
2	0144165

19 - SPARE PARTS FOR DC SOLENOID VALVE

SEALS KIT

The codes include the O-Ring n° 2, 5, 6 e 7.


Cod. 1985406 NBR seals FPM (viton) seals Cod. 1985410

NOTE: You can also order coils using the coil codes in points 7.2 and 17.3.

41 150/123 ED 17/18

20 - SPARE PARTS FOR AC SOLENOID VALVE

21 - SUBPLATES

(see catalogue 51 000)

Type PMMD-AI3G with rear ports 3/8" BSP

Type PMMD-AL3G with side ports 3/8" BSP

DUPLOMATIC MS Spa

via Mario Re Depaolini, 24 | 20015 Parabiago (MI) | Italy
T +39 0331 895111 | E vendite.ita@duplomatic.com | sales.exp@duplomatic.com
duplomaticmotionsolutions.com